SUMMARIZED RELIABILITY-BASED GEOTECHNICAL INVESTIGATION AND DESIGN OF TRANSMISSION LINES

Zack Heim, Salt River Project
Peter Kandaris, P.E., Salt River Project
Sandra Houston, Ph.D., Arizona State University

Summary

- Case Study
- Using geology to select boring information
- Statistical evaluation of profiles
- Standard of practice implications
BPC 500/230kV Transmission Line

- Located Southeast of Phoenix, AZ
- 40 mile segment of the larger loop
- 301 drilled shaft foundations
- 37 boring locations
- 9 seismic surveys
- 8 pressuremeter tests

Using Geology to Select Boring Locations

- Geologic variability is indicative of geotechnical variability
- Investigation sites within a geologic region should be proportional to structures within the region
- Number of investigation sites influenced by multiple factors
Statistical Evaluation of Subsurface Resistance

- Multi-step process
 - Initial Data Grouping
 - Initial Design Profile
 - Statistical Evaluation of Profiles
 - Acceptable Variance?
 - Statistical Derivation of Idealized Soil Parameters
 - Foundation Design

Statistical Evaluation of Profiles

- Statistical evaluation of profiles

Zone 2A Corrected SPT

Corrected SPT vs. Depth (m)

0 10 20 30 40 50 60 70 80

0 -2 -4 -6 -8 -10

Depth (m)
Statistical Evaluation of Profiles

- Statistical evaluation of profiles

<table>
<thead>
<tr>
<th>Zone 2A Corrected SPT</th>
<th>Corrected SPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

- COV 50%
 - Mean: 35
 - Std. Dev.: 17
 - 1- Std. Dev.: 17
 - 5% LEL: 30

- COV 35%
 - Mean: 45
 - Std. Dev.: 16
 - 1- Std. Dev.: 30
 - 5% LEL: 39

- Depth (m): 0 - 3.5m
 - n=8?

- Depth (m): > 3.5m
 - n=39?
Statistical Evaluation of Profiles

- Statistical evaluation of profiles

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Zone 2A Corrected SPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corrected SPT</td>
</tr>
<tr>
<td></td>
<td>n=12</td>
</tr>
<tr>
<td>0 - 1.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 - 3.5m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3.5 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No unifying design standard exists
 - Soil zones defined based on material similarity in adjacent borings (no geologic information)
 - Blow counts used as a check for validity of groupings
 - Iterative approach to strata groupings
 - 9 design soil zones selected under standard of practice
 - 12 zones selected using geologic information
BPC Standard of Practice Implications

Field and Lab Data Analysis

- Engineering judgment utilized to select low bound values
BPC Standard of Practice Implications

Cost impact study results of Simplified Statistical Approach vs. Standard of Practice

<table>
<thead>
<tr>
<th>Total Foundations</th>
<th>Avg. Additional Concrete /Fdn</th>
<th>Total Additional Concrete</th>
<th>Avg. Additional Cost/Fdn</th>
<th>Total Cost Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>274</td>
<td>4.5</td>
<td>949</td>
<td>$1,405</td>
<td>$299,912 (13%)</td>
</tr>
</tbody>
</table>

- Simplified RBD methods are intended to augment sound engineering judgment
- Standard of practices results in a 0.02% probability of failure
- Techniques utilized on the BPC provide a 2% probability of failure which is comparable to other civil engineering structures